6,138 research outputs found

    NNLO predictions for Z-boson pair production at the LHC

    Full text link
    We present a calculation of the NNLO QCD corrections to Z-boson pair production at hadron colliders, based on the N-jettiness method for the real radiation parts. We discuss the size and shape of the perturbative corrections along with their associated scale uncertainties and compare our results to recent LHC data at s=13\sqrt{s}=13 TeV.Comment: 19 pages, 2 Tables, 4 figures. Version to appear in JHE

    Numerical evaluation of two-loop integrals with pySecDec

    Full text link
    We describe the program pySecDec, which factorises endpoint singularities from multi-dimensional parameter integrals and can serve to calculate integrals occurring in higher order perturbative calculations numerically. We focus on the new features and on frequently asked questions about the usage of the program.Comment: 11 pages, to appear in the proceedings of the HiggsTools Final Meeting, IPPP, University of Durham, UK, September 201

    Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy.

    Get PDF
    In mass spectrometry-based untargeted metabolomics, rarely more than 30% of the compounds are identified. Without the true identity of these molecules it is impossible to draw conclusions about the biological mechanisms, pathway relationships and provenance of compounds. The only way at present to address this discrepancy is to use in silico fragmentation software to identify unknown compounds by comparing and ranking theoretical MS/MS fragmentations from target structures to experimental tandem mass spectra (MS/MS). We compared the performance of four publicly available in silico fragmentation algorithms (MetFragCL, CFM-ID, MAGMa+ and MS-FINDER) that participated in the 2016 CASMI challenge. We found that optimizing the use of metadata, weighting factors and the manner of combining different tools eventually defined the ultimate outcomes of each method. We comprehensively analysed how outcomes of different tools could be combined and reached a final success rate of 93% for the training data, and 87% for the challenge data, using a combination of MAGMa+, CFM-ID and compound importance information along with MS/MS matching. Matching MS/MS spectra against the MS/MS libraries without using any in silico tool yielded 60% correct hits, showing that the use of in silico methods is still important

    Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles.

    Get PDF
    There is still a large gap in our understanding between the functional complexity of cells and the reconstruction of partial cellular functions in vitro from purified or engineered parts. Here we have introduced artificial vesicles of defined composition into living cells to probe the capacity of the cellular cytoplasm in dealing with foreign material and to develop tools for the directed manipulation of cellular functions. Our data show that protein-free liposomes, after variable delay times, are captured by the Golgi apparatus that is reached either by random diffusion or, in the case of large unilamellar vesicles, by microtubule-dependent transport via a dynactin/dynein motor complex. However, insertion of early endosomal SNARE proteins suffices to convert liposomes into trafficking vesicles that dock and fuse with early endosomes, thus overriding the default pathway to the Golgi. Moreover, such liposomes can be directed to mitochondria expressing simple artificial affinity tags, which can also be employed to divert endogenous trafficking vesicles. In addition, fusion or subsequent acidification of liposomes can be monitored by incorporation of appropriate chemical sensors. This approach provides an opportunity for probing and manipulating cellular functions that cannot be addressed by conventional genetic approaches. We conclude that the cellular cytoplasm has a remarkable capacity for self-organization and that introduction of such macromolecular complexes may advance nanoengineering of eukaryotic cells

    SNARE proteins: zip codes in vesicle targeting?

    Get PDF
    Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic

    A fluorescence-based in vitro assay for investigating early endosome dynamics.

    No full text

    Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America

    Get PDF
    Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet. We compared the spring migration strategies of Fork‐tailed Flycatchers (Tyrannus s. savana) that breed at south‐temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time‐selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration. We attached light‐level geolocators to Fork‐tailed Flycatchers at two tropical breeding sites in Brazil and at two south‐temperate breeding sites in Argentina and tracked their movements until the following breeding season. Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date. This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork‐tailed Flycatchers in South America are not more time‐selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.Fil: Jahn, Alex. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Cereghetti, Joaquín. Universidad Nacional de La Pampa; ArgentinaFil: Cueto, Víctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagóica. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Esquel. Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Hallworth, Michael T.. Smithsonian Conservation Biology Institute; Estados UnidosFil: Levey, Douglas J.. National Science Foundation; Estados UnidosFil: Marini, Miguel Â.. Universidade do Brasília; BrasilFil: Masson, Diego. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Pizo, Marco A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Sarasola, José Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Tuero, Diego Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin
    corecore